

Khatra Adibasi Mahavidyalaya

Khatra, Bankura, West Bengal

Department of Mathematics

Syllabus Module (2018-2019)

Syllabus Module

Dept. Of Mathematics

Session : 2018-2019

Khatra Adibasi Mahavidyalaya

Semester -1			
COURSE	COURSE	COURSE TOPIC	Teachers
CODE	TITLE		
SH/MTH/ 101/C-1	Calculus, Geometry & Differential Equation	Unit 1 Hyperbolic functions, higher order derivatives, Leibnitz rule and its applications to problems of types $e^{ax+bsinx}$, $e^{ax+bcosx}$, $(ax + b)^n sinx$, $(ax + b)^n cosx$, concavity and inflection points, envelopes, asymptotes, curve tracing in Cartesian coordinates, tracing in polar coordinates of standard curves, L'Hospital's rule, applications in business, economics and life sciences.	AI
		Unit 2 Reduction formulae, derivations and illustrations of reduction formulae of the type $\int sin^n x dx$, $\int cos^n x dx$, $\int tan^n x dx$, $\int sec^n x dx \int (logx)^n dx$, $\int sin^m x cos^n x dx$, parametric equations, parameterizing a curve, arc length, arc length of parametric curves, area of surface of revolution. Techniques of sketching conics.	AI
		Unit 3 Reflection properties of conics, rotation of axes and second degree equations, classification of conics using the discriminant, polar	SD

		equations of conics.	
		Spheres. Cylindrical surfaces.	
		Central conicoids, paraboloids,	
		plane sections of conicoids,	
		Generating lines, classification of	
		quadrics, Illustrations of graphing	
		standard quadric surfaces like	
		cone, ellipsoid.	
		Unit 4	SD
		Differential equations and	
		mathematical models. General,	
		particular, explicit, implicit and	
		singular solutions of a differential	
		equation. Exact differential	
		equations and integrating factors,	
		separable equations and equations	
		reducible to this form, linear	
		equation and Bernoulli equations,	
		special integrating factors and	
		transformations.	
SH/MTH/	Algebra	Unit 1	MN
102/0 2		Polar representation of complex	
102/ 6-2		numbers, nth roots of unity, De	
		Moivre's theorem for rational	
		indices and its applications.	
		Theory of equations: Relation	
		between roots and coefficients,	
		Transformation of equation,	
		Descartes rule of signs, Cubic and	
		Descartes rule of signs, Cubic and biquadratic equation.	
		Descartes rule of signs, Cubic and biquadratic equation. Inequality: The inequality involving	
		Descartes rule of signs, Cubic and biquadratic equation. Inequality: The inequality involving $AM \ge GM \ge HM$, Cauchy-Schwartz	
		Descartes rule of signs, Cubic and biquadratic equation. Inequality: The inequality involving $AM \ge GM \ge HM$, Cauchy-Schwartz inequality.	
		Descartes rule of signs, Cubic and biquadratic equation. Inequality: The inequality involving $AM \ge GM \ge HM$, Cauchy-Schwartz inequality. Unit 2	MN
		Descartes rule of signs, Cubic and biquadratic equation. Inequality: The inequality involving $AM \ge GM \ge HM$, Cauchy-Schwartz inequality. Unit 2 Equivalence relations. Functions,	MN
		Descartes rule of signs, Cubic and biquadratic equation. Inequality: The inequality involving $AM \ge GM \ge HM$, Cauchy-Schwartz inequality. Unit 2 Equivalence relations. Functions, Composition of functions,	MN
		Descartes rule of signs, Cubic and biquadratic equation. Inequality: The inequality involving $AM \ge GM \ge HM$, Cauchy-Schwartz inequality. Unit 2 Equivalence relations. Functions, Composition of functions, Invertible functions, One to one	MN
		Descartes rule of signs, Cubic and biquadratic equation. Inequality: The inequality involving $AM \ge GM \ge HM$, Cauchy-Schwartz inequality. Unit 2 Equivalence relations. Functions, Composition of functions, Invertible functions, One to one correspondence and cardinality of	MN
		Descartes rule of signs, Cubic and biquadratic equation. Inequality: The inequality involving $AM \ge GM \ge HM$, Cauchy-Schwartz inequality. Unit 2 Equivalence relations. Functions, Composition of functions, Invertible functions, One to one correspondence and cardinality of a set. Well-ordering property of	MN

		algorithm. Divisibility and	
		Euclidean algorithm. Congruence	
		relation between integers.	
		Principles of Mathematical	
		Induction, statement of	
		Fundamental Theorem of	
		Arithmetic.	
		Unit 3	MN
		Systems of linear equations, row	10114
		reduction and echelon forms.	
		vector equations, the matrix	
		equation Ax=b, solution sets of	
		linear systems, applications of	
		linear systems, linear	
		independence.	
		Unit 4	MN
		Introduction to linear	
		transformations, matrix of a linear	
		transformation, inverse of a matrix,	
		characterizations of invertible	
		matrices. Subspaces of Rn,	
		dimension of subspaces of Rn,	
		rank of a matrix, Eigen values,	
		Eigen Vectors and Characteristic	
		Equation of a matrix. Cayley-	
		Hamilton theorem and its use in	
		finding the inverse of a matrix	
SH/MTH/	Calculus,	Unit 1	AI
102/CE 1	Geometry &	Hyperbolic functions, higher order	
103/ GL-1	Differential	derivatives, Leibnitz rule and its	
	Equation (GE	applications to problems of types $e^{ax+bsinx} e^{ax+bcosx}$ (ar +	
	T1)	$b)^n sinx, (ax + b)^n cosx, concavity$	
	/	and inflection points, envelopes,	
		asymptotes, curve tracing in	
		Cartesian coordinates, tracing in	
		polar coordinates of standard	
		curves, L'Hospital's rule,	
		applications in business,	
		economics and life sciences.	
		Unit 2	AI
		Reduction formulae, derivations	
		and illustrations of reduction	

	formulae of the type J sin"x dx,	
	$\int \cos^n x dx$, $\int \tan^n x dx$,	
	$\int \sec^n x dx \int (\log x)^n dx$,	
	$\int sin^m x cos^n x dx$, parametric	
	equations, parameterizing a curve,	
	arc length, arc length of parametric	
	curves, area of surface of	
	revolution.	
	Techniques of sketching conics.	
	Unit 3	SD
	Reflection properties of conics,	
	rotation of axes and second degree	
	equations, classification of conics	
	using the discriminant, polar	
	equations of conics.	
	Spheres. Cylindrical surfaces.	
	Central conicoids, paraboloids,	
	plane sections of conicoids,	
	Generating lines, classification of	
	quadrics, Illustrations of graphing	
	standard quadric surfaces like	
	cone, ellipsoid.	
-		
	UTIIL 4	5D
	Differential equations and	
	Differential equations and	
	Differential equations and mathematical models. General,	
	Differential equations and mathematical models. General, particular, explicit, implicit and	
	Differential equations and mathematical models. General, particular, explicit, implicit and singular solutions of a differential	
	Differential equations and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential	
	Differential equations and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors,	
	Differential equations and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations	
	Differential equations and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations reducible to this form, linear	
	Differential equations and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations reducible to this form, linear equation and Bernoulli equations,	
	Differential equations and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations reducible to this form, linear equation and Bernoulli equations, special integrating factors and	
	Differential equations and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations reducible to this form, linear equation and Bernoulli equations, special integrating factors and transformations.	
	Differential equations and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations reducible to this form, linear equation and Bernoulli equations, special integrating factors and transformations.	
	Differential equations and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations reducible to this form, linear equation and Bernoulli equations, special integrating factors and transformations.	
	Differential equations and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations reducible to this form, linear equation and Bernoulli equations, special integrating factors and transformations.	
	Differential equations and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations reducible to this form, linear equation and Bernoulli equations, special integrating factors and transformations. Tentative dates of Internal Assessment are last week	
	Differential equations and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations reducible to this form, linear equation and Bernoulli equations, special integrating factors and transformations. Tentative dates of Internal Assessment are last week of September 2018.	
	Differential equations and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations reducible to this form, linear equation and Bernoulli equations, special integrating factors and transformations. Tentative dates of Internal Assessment are last week of September 2018.	
	Differential equations and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations reducible to this form, linear equation and Bernoulli equations, special integrating factors and transformations. Tentative dates of Internal Assessment are last week of September 2018.	
	Differential equations and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations reducible to this form, linear equation and Bernoulli equations, special integrating factors and transformations. Tentative dates of Internal Assessment are last week of September 2018.	
	Differential equations and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations reducible to this form, linear equation and Bernoulli equations, special integrating factors and transformations. Tentative dates of Internal Assessment are last week of September 2018.	

Semester II			
COURSE CODE	COURSE TITLE	COURSE TOPIC	Teachers
SH/MTH/ 201/C-3	Real Analysis	Unit 1 Review of Algebraic and Order Properties of R, ε -neighbourhood of a point in R. Idea of countable sets, uncountable sets and uncountability of R. Bounded above sets, Bounded below sets, Bounded Sets, Unbounded sets. Suprema and Infima. Completeness Property of R and its equivalent properties. The Archimedean Property, Density of Rational (and Irrational) numbers in R, Intervals. Limit points of a set, Isolated points, Open set, closed set, derived set, Illustrations of Bolzano- Weierstrass theorem for sets, compact sets in R, Heine-Borel Theorem.	AI
		Unit 2 Sequences, Bounded sequence, Convergent sequence, Limit of a sequence, lim inf, lim sup. Limit Theorems. Monotone Sequences, Monotone Convergence Theorem. Subsequences, Divergence Criteria. Monotone Subsequence Theorem (statement only), Bolzano Weierstrass Theorem for Sequences. Cauchy sequence, Cauchy's Convergence Criterion.	MN
		Unit 3 Infinite series, convergence and divergence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test, Limit Comparison test, Ratio Test, Cauchy's nth root test, Integral	MN

		test. Alternating series, Leibniz	
		test. Absolute and Conditional	
		convergence.	
SH/MTH/	Differential	Unit 1	CD
202/C-4	Fouations and	Lipschitz condition and Picard's	
	Veeter	Theorem (Statement only).	
	vector	General solution of homogeneous	
	Calculus	equation of second order, principle	
		of super position for homogeneous	
		equation, Wronskian: its properties	
		and applications, Linear	
		homogeneous and non-	
		homogeneous equations of higher	
		order with constant coefficients,	
		Euler's equation, method of	
		undetermined coefficients, method	
		of variation of parameters.	
		Unit 2	CD
		Systems of linear differential	
		equations, types of linear systems,	
		differential operators, an operator	
		method for linear systems with	
		constant coefficients,	
		Basic Theory of linear systems in	
		normal form, homogeneous linear	
		systems with constant	
		coefficients: Two Equations in two	
		unknown functions.	
		Unit 3	CD
		Equilibrium points, Interpretation	
		of the phase plane	
		Power series solution of a	
		differential equation about an	
		ordinary point, solution about a	
		regular singular point.	
		Unit 4	CD
		Triple product, introduction to	
		vector functions, operations with	
		vector-valued functions, limits and	
		continuity of vector functions,	
		differentiation and integration of	
		vector functions.	
SH/MTH/	Real Analysis	Unit 1	AI

203/GF-2	(GF T3)	Review of Algebraic and Order	
	(0.2.10)	Properties of R, ε -neighbourhood	
		of a point in R. Idea of countable	
		sets, uncountable sets and	
		uncountability of R. Bounded	
		above sets, Bounded below sets,	
		Bounded Sets, Unbounded sets.	
		Suprema and Infima.	
		Completeness Property of R and	
		its equivalent properties. The	
		Archimedean Property. Density of	
		Rational (and Irrational) numbers	
		in R. Intervals. Limit points of a	
		set. Isolated points. Open set.	
		closed set, derived set.	
		Illustrations of Bolzano-	
		Weierstrass theorem for sets.	
		compact sets in R. Heine-Borel	
		Theorem.	
		Unit 2	NANI
		Sequences Bounded sequence	IVIIN
		Convergent sequence Limit of a	
		sequence lim inf lim sup limit	
		Theorems Monotone Sequences	
		Monotone Convergence Theorem	
		Subsequences Divergence	
		Criteria Monotone Subsequence	
		Theorem (statement only)	
		Bolzano Weierstrass Theorem for	
		Sequences Cauchy sequence	
		Cauchy's Convergence Criterion.	
		Unit 3	МЛ
		Infinite series, convergence and	IVIIN
		divergence of infinite series.	
		Cauchy Criterion. Tests for	
		convergence: Comparison test.	
		Limit Comparison test, Ratio Test.	
		Cauchy's nth root test, Integral	
		test. Alternating series, Leibniz	
		test. Absolute and Conditional	
		convergence.	

SEMESTER – III			
COURSE	COURSE	COURSE TOPIC	Teachers
CODE	TITLE		
SH/MTH/ 301/C-5	Theory of Real Functions & Introduction to Metric Space	Unit 1 Limits of functions ($\varepsilon - \delta$ approach), sequential criterion for limits, divergence criteria. Limit theorems, one sided limits. Infinite limits and limits at infinity. Continuous functions, sequential criterion for continuity and discontinuity. Algebra of continuous functions. Continuous functions on an interval, intermediate value theorem, location of roots theorem,	MN
		preservation of intervals theorem. Uniform continuity, non-uniform continuity criteria, uniform continuity theorem. Unit 2 Differentiability of a function at a point and in an interval,	MN
		Caratheodory's theorem, algebra of differentiable functions. Relative extrema, interior extremum theorem. Rolle's theorem. Mean value theorem, intermediate value property of derivatives, Darboux's theorem. Applications of mean value theorem to inequalities and approximation of polynomials.	
		Unit 3 Cauchy's mean value theorem. Taylor's theorem with Lagrange's form of remainder, Taylor's theorem with Cauchy's form of remainder, application of Taylor's theorem to convex functions, relative extrema. Taylor's series and Maclaurin's series expansions of exponential and trigonometric functions, $ln(1 + x)$,	MN

		$\frac{1}{ax+b}$ and $(1 + x)$. Application of	
		Taylor's theorem to inequalities.	
		Unit 4	SD
		Metric spaces: Definition and	
		examples. Open and closed balls,	
		neighbourhood, open set, interior	
		of a set. Limit point of a set, closed	
		set, diameter of a set, subspaces,	
		dense sets, separable spaces.	
SH/MTH/	Group Theory-	Unit 1	AI
302/ C-6	1	Symmetries of a square, Dihedral	
,		groups, definition and examples of	
		groups including permutation	
		groups and quaternion groups	
		(through matrices), elementary	
		properties of groups.	
		Unit 2	AI
		Subgroups and examples of	
		subgroups, centralizer, normalizer,	
		center of a group, product of two	
		subgroups.	
		Unit 3	AI
		Properties of cyclic groups,	
		classification of subgroups of	
		cyclic groups. Cycle notation for	
		permutations, properties of	
		permutations, even and odd	
		permutations, alternating group,	
		properties of cosets, Lagrange's	
		theorem and consequences	
		including Fermat's Little theorem.	
		Unit 4	AI
		External direct product of a finite	
		number of groups, normal	
		subgroups, factor groups, Cauchy's	
		theorem for finite abelian groups.	
		Unit 5	AI
		Group homomorphisms, properties	
		of homomorphisms, Cayley's	
		theorem, properties of	
		isomorphisms. First, Second and	
		Third isomorphism theorems.	

SH/MTH	Numerical	Unit 1	SD
/303/C-7	Methods	Algorithms. Convergence. Errors:	
	Numerical	Relative, Absolute. Round off.	
	Mathada Lah	Truncation.	
	Methods Lab	Unit 2	SD
		Transcendental and Polynomial	
		equations: Bisection method,	
		Newton's method, Secant method,	
		Regula-falsi method, fixed point	
		iteration, Newton-Raphson	
		method. Rate of convergence of	
		these methods.	
		Unit 3	SD
		System of linear algebraic	
		equations: Gaussian Elimination	
		and Gauss Jordan methods. Gauss	
		Jacobi method, Gauss Seidel	
		method and their convergence	
		analysis. LU Decomposition	
		Unit 4	MN
		Interpolation: Lagrange and	
		Newton's methods. Error bounds.	
		Finite difference operators.	
		Gregory forward and backward	
		difference interpolation.	
		Numerical differentiation: Methods	
		based on interpolations, methods	
		based on finite differences.	
		Unit 5	MN
		Numerical Integration: Newton	
		Cotes formula, Trapezoidal rule,	
		Simpson's 1/3rd rule, Simpsons	
		3/8th rule, Weddle's rule, Boole's	
		Rule. Midpoint rule, Composite	
		Trapezoidal rule, Composite	
		Simpson's 1/3rd rule, Gauss	
		quadrature formula.	
		The algebraic eigenvalue problem:	
		Power method.	
		Approximation: Least square	
		polynomial approximation.	
SH/MTH /	Algebra	Unit 1	SD
304/GE-3	(GET2)	Polar representation of complex	
		numbers, nth roots of unity, De	

Moivre's theorem for rational	
indices and its applications.	
Theory of equations: Relation	
between roots and coefficients,	
Transformation of equation,	
Descartes rule of signs, Cubic and	
biquadratic equation.	
Inequality: The inequality involving	
AM≥GM≥HM, Cauchy-Schwartz	
inequality.	
Unit 2	SD
Equivalence relations. Functions,	00
Composition of functions,	
Invertible functions, One to one	
correspondence and cardinality of	
a set. Well-ordering property of	
positive integers, Division	
algorithm, Divisibility and	
Euclidean algorithm. Congruence	
relation between integers.	
Principles of Mathematical	
Induction, statement of	
Fundamental Theorem of	
Arithmetic.	
Unit 3	MN
Systems of linear equations, row	10114
reduction and echelon forms,	
vector equations, the matrix	
equation	
Ax = b, solution sets of linear	
systems, applications of linear	
systems, linear independence.	
Unit 4	MN
Introduction to linear	
transformations, matrix of a linear	
transformation, inverse of a matrix,	
characterizations of invertible	
matrices. Subspaces of R ⁿ ,	
dimension of subspaces of R ⁿ , rank	
of a matrix, Eigen values, Eigen	
Vectors and Characteristic	
Equation of a matrix. Cayley-	
Hamilton theorem and its use in	

SH/MTH / Programming AI 305/SEC-1 using C (New) Image: Comparison of the second				
	SEN	MESTER - IV		
COURSE	COURSE	COURSE TOPIC	Teachers	
CODE	TITLE			
SH/MTH /401/C-8	Riemann Integration and Series of Functons	Unit 1 Riemann integration: inequalities of upper and lower sums, Darbaux integration, Darbaux theorem, Riemann conditions of integrability, Riemann sum and definition of Riemann integral through Riemann sums, equivalence of two Definitions. Riemann integrability of monotone and continuous functions, Properties of the Riemann integral; definition and integrability of piecewise continuous and monotone functions. Intermediate Value theorem for Integrals. Fundamental theorem of Integral Calculus.	AI	
		Unit 2 Improper integrals. Convergence of Beta and Gamma functions. Unit 3 Pointwise and uniform convergence of sequence of functions. Theorems on continuity, derivability and integrability of the limit function of a sequence of functions. Series of functions:	AI	

		Theorems on the continuity and	
		derivability of the sum function of	
		a series of functions; Cauchy	
		criterion for uniform convergence	
		and Weierstrass M-Test.	
		Unit 4	CD
		Fourier series: Definition of Fourier	UD
		coefficients and series. Reimann	
		Lehesgue lemma Bessel's	
		inequality Parseval's identity	
		Dirichlet's condition	
		Examples of Fourier expansions	
		and summation results for series	
		linit 5	
		Power series radius of	CD
		convergence, Cauchy Hadamard	
		Differentiation and integration of	
		power series: Abel's Theorem:	
		Weierstrass Approximation	
	Multiveriete		N / N /
5 10 1 402/0-	wullivariale	Currentiane of equarel variables	IVIIN
9	Calculus	Functions of several variables,	
		two or more veriables	
		Dertial differentiation, total	
		differentiability and	
		differentiability aufficient	
		condition for differentiability	
		Chain rule for one and two	
		independent peremeters	
		directional derivatives, the	
		directional derivatives, the	
		gradient, maximal and normal	
		property of the gradient, tangent	
		two variables, method of Lagrange	
		multipliere constrained	
		optimization problems	
		linit 2	N / N I
		Dauble integration over	IVIIN
		rootangular ragion daubla	
		rectangular region, double	
		rectangular region, double integration over non-rectangular	
		rectangular region, double integration over non-rectangular region, Double integrals in polar	

		Triple integral over a	
		parallelepiped and solid regions.	
		Volume by triple integrals,	
		cylindrical and spherical co-	
		ordinates. Change of variables in	
		double integrals and triple	
		integrals	
		Unit 3	AI
		Definition of vector field,	
		divergence and curl.	
		Line integrals, Applications of line	
		integrals: Mass and Work.	
		Fundamental theorem for line	
		integrals, conservative vector	
		fields, independence of path.	
		Unit 4	AI
		Green's theorem, surface integrals,	/
		integrals over parametrically	
		defined surfaces. Stoke's theorem,	
		The Divergence theorem.	
SH/MTH	Ring Theory	Unit 1	MN
/403/C-10	and Linear	Definition and examples of rings,	
, 100, 0 10		properties of rings, subrings,	
	Algebra-I	integral domains and fields,	
		characteristic of a ring. Ideal, ideal	
		generated by a subset of a ring,	
		factor rings, operations on ideals,	
		prime and maximal ideals.	
		Unit 2	MN
		Ring homomorphisms, properties	
		of ring homomorphisms.	
		Isomorphism theorems I, II and III,	
		field of quotients.	
		Unit 3	CD
		Vector spaces, subspaces, algebra	
		of subspaces, quotient spaces,	
		linear combination of vectors,	
		linear span, linear independence,	
		basis and dimension, dimension of	
		subspaces.	
		Unit 4	CD
		Linear transformations, null space,	
		range, rank and nullity of a linear	

		transformation, matrix	
		representation of a linear	
		transformation, algebra of linear	
		transformations. Isomorphisms.	
		lsomorphism theorems, invertibility	
		and isomorphisms, change of	
		coordinate matrix.	
SH/MTH	Differential	Unit 1	CDG
/404/GE-4	Equations and	Lipschitz condition and Picard's	
	Vector	Theorem (Statement only).	
	Calculus	General solution of homogeneous	
		equation of second order, principle	
	(GET4)	of super position for homogeneous	
		equation, Wronskian: its properties	
		and applications, Linear	
		homogeneous and non-	
		homogeneous equations of higher	
		order with constant coefficients,	
		Euler's equation, method of	
		undetermined coefficients, method	
		of variation of parameters.	
		Unit 2	CDG
		Systems of linear differential	
		equations, types of linear systems,	
		method for linear systems with	
		constant coefficients	
		Basic Theory of linear systems in	
		normal form homogeneous linear	
		systems with constant	
		coefficients: Two Equations in two	
		unknown functions.	
		Unit 3	CDG
		Equilibrium points, Interpretation	024
		of the phase plane	
		Power series solution of a	
		differential equation about an	
		ordinary point, solution about a	
		regular singular point.	
		Unit 4	CDG
		Triple product, introduction to	
		vector functions, operations with	
		vector-valued functions, limits and	
		continuity of vector functions,	

		differentiation and integration of vector functions.	
SH/MTH / 405/SEC-2	Graph Theory (SEC T4)	Unit 1 Definition, examples and basic properties of graphs, pseudo graphs, complete graphs, bi - partite graphs isomorphism of graphs.	MN
		Unit 2 Eulerian circuits, Eulerian graph, semi-Eulerian graph, theorems, Hamiltonian cycles, theorems Representation of a graph by matrix, the adjacency matrix, incidence matrix, weighted graph,	MN
		Unit 3 Travelling salesman's problem, shortest path, Tree and their properties, spanning tree, Dijkstra's algorithm, Warshall algorithm.	MN

3RD YEAR

Part –III	Paper – V	Group – A	MN
	-	Analysis – III (50 marks)	
		Sequence of real numbers. Notion of convergence and	
		limit. Monotone sequences subsequences and their	
		convergence, upper and lower limits of a sequence,	
		algebra of limit superior and limit inferior. Cauchy's	
		general principle of convergence. Bolzano-	
		Weierstrass theorem, Heine-Borel theorem. Series of	
		non negative terms. Test for convergence:	
		Comparison test, Ratio test, Cauchy's root	
		test, Raabe's test, Logarithmic test, Gauss's test,	
		Cauchy's condensation test. Alternating series,	
		Leibnitz's test. Series of arbitrary numerical terms.	
		Absolutely and conditionally convergent series,	
		Riemann's rearrangement theorem (Proof not	
		required) Sequences and series of functions and their	
		convergence. Uniform convergence. Cauchy's criterion	
		of uniform convergence. Continuity of a limit function	
		of a sequence of continuous functions. Continuity of	
		the sum function of a uniformly convergent series of	
		continuous functions. Term-by-term differentiation	
		and integration of a uniformly convergent series of	
		functions. Fourier series of a function. Dirichlet's	
		condition (statement only). Uniformly convergent	
		trigonometric series as a Fourier series. Riemann-	
		Lebesgue theorem on Fourier series. Series of odd	
		and even functions. Convergence of Fourier series of	
		piece-wise monotone functions (Proof not required)	
		Functions of several variables (two and three	
		variables): Theory of maxima and minima, Lagrange's	
		method of multiplier. Jacobian, Implicit function	
		theorem (Proof not required). Inverse function	
		theorem (statement only). Change of variables of	
		multiple integrals. Differentiation and integrals under	
		the sign of integration. Integral as a function of	
		parameter. Change of order of integration for	
		repeated integrals	

Group-B	MN
Complex Analysis (20 Marks)	
Introduction of complex numbers as ordered pair of	
real numbers (a, b) and their representation as $a + ib$,	
the complex plane ${\mathbb C}$ and its basic geometric and	
topological aspects, continuity, differentiability of	
complex valued functions, Cauchy-Riemann (C-R)	
equations, analytic functions. Power series, radius of	
convergence and Cauchy-Handamard theorem,	
infinite differentiability of sum function of power	
series, introduction of exp (z), cosz, sinz, logz and its	
branch-their elementary properties. Extended	
complex plane \mathbb{C}_{∞} , stereographic projection and	
spherical representation of $\mathbb{C}\infty$.Bilinear	
transformations: The group of Mobius transformation	
and its generators-the inversion, dilations; fixed point	
and uniqueness of a Mobius transformation by its	
action at three distinct points; cross ratio, cross ratio	
and circle preserving property of Mobius	
transformation; orientation principle and construction	
of bijective analytic functions from one side of a circle	
onto one side of another circle in \mathbb{C}^{∞} .	
Group-C	MN
Metric Spaces (30 Marks)	
Definition of Metric spaces, examples including the	
standard ones such as discrete metric space, the real	
line \mathbb{R} , the complex plane \mathbb{C} , Euclidian spaces \mathbb{R}^{nn} ,	
unitary spaces \mathbb{C}_{nn} , (with sup metric and integral	
metric), . Open ball, closed ball, metric topology,	
distance between a point and a set, distance between	
two sets, boundedness of a set, properties of open	
and closed sets, limit point, interior point, closure,	
interior, boundary of subsets and relation between	
them; dense subsets, nowhere dense subsets, basis,	
separable space, LindelÖf space, second countable	
space and relation between them; Hausdorff property,	
Cauchy sequence, Convergence of sequences,	

	completeness and Cantor Intersection theorem.	
	Continuous functions and their basic properties,	
	algebra of real/ complex valued continuous	
Paper – VI	Group –A	AI
	Elements of Continuum Mechanics (10 Marks)	
	Idea of continuum, idea of strain and stress at a point	
	in a continuum, stress vector, stress matrix, ideal	
	fluid, viscous fluid.	
	Group – B	AI
	Classical Dynamics, Dynamics of a system of	
	Particles and rigid body (40 Marks)	
	Physical foundation of classical dynamics:	
	Interpretation of Newton's laws of motion – body force	
	and surface force with examples, inertial frames, law	
	of superposition, closed systems, concepts of	
	absolute time, concepts of absolute space, concepts	
	of absolute simultaneity of events; Galilean	
	transformation – form invariance of Newton's laws	
	under Galilean transformation, limitations of direct	
	applications of Newton's laws in solving problems of	
	mechanics. Dynamics of a system of particles: Basic	
	concepts, Centroid, linear momentum, angular	
	momentum, kinetic energy, potential energy, work,	
	power, conservative system of forces; Use of centroid	
	– motion relative to the centroid, angular momentum	
	and kinetic energy relative to the centroid;	
	Conservation principles – linear momentum, angular	
	momentum, total energy; Constraints – basic concepts	
	with examples, D'Alembert Principle.	
	Introduction to rigid body dynamics: Moments and	
	product of inertia – basic concepts, radius of gyration,	
	parallel and perpendicular axis theorems, a few	
	examples (rod, rectangular plate, circular plate, elliptic	
	plate, sphere, cone, rectangular parallelepiped,	
	cylinder, ellipsoid of revolution etc.); Motion about a	
	point and about fixed axes – angular momentum,	
 	inertia matrix, principal axes, principal moments of	

lin	nertia, kinetic energy, momental ellipsoid,	
eo	quimomental surtace, reaction of the axis of rotation,	
in	npulsive forces; General motion of rigid body –	
tr	ranslational and rotational motion, kinetic energy and	
aı	ngular momentum (translational and rotational);	
T	wo-dimensional motion of rigid body - equation of	
m	notion, kinetic energy, angular momentum, problems	
ill	lustrating laws of motion [motion of a uniform	
sp	phere (solid and hollow) along a perfectly rough	
pl	lane, motion of a uniform heavy circular cylinder	
(s	solid and hollow) along a	
G	iroup – C	SD
S	Statics (20 Marks)	
Р	Prerequisite: [Basic concepts – concurrent forces,	
pa	arallel forces, moment of a force, couple, resultant of	
а	force and a couple]. Forces in three-dimension –	
re	eduction to force and couple, Pointsot's central axis,	
W	rench, pitch, screw, conditions of equilibrium,	
in	nvariants; Virtual work – concept of virtual	
di	isplacement, principle of virtual work, simple	
ex	xamples; Stability of equilibrium – stable and	
u	nstable equilibrium, energy test of stability,	
de	etermination of positions of equilibrium, stability of a	
he	eavy body resting on a fixed body with smooth	
SL	urfaces, simple examples; Equilibrium of flexible	
st	tring – general equations of equilibrium of a uniform	
fle	exible string under the action of given coplanar	
fo	prces, common catenary, parabolic chain, suspension	
bi	ridge, catenary of uniform strength.	
G	aroup – D	SD
н	vdrostatics (30 Marks)	
B	asic concepts – fluid pressure and its elementary	
	roperties (such as in equilibrium it is same in every	
	irection), density, specific gravity, compressible and	
lin	acompressible fluid, homogeneous and non-	
	omogeneous fluid: Fauilibrium of fluid in a given field	
	f force – equation of pressure conditions of	
01		

	equilibrium, pressure gradient, equipressure surface,	
	equilibrium of fluid rotating uniformly about an axis;	
	Pressure in a heavy homogeneous liquid – thrust on a	
	plane surface, centre of pressure, determining the	
	position of the centre of pressure, effects on	
	increasing depth, thrust on a curved surface,	
	buoyancy, Archimedes principle, resultant thrust,	
	Equilibrium of floating bodies – conditions of	
	equilibrium of a freely floating body, body floating	
	under constraints, equilibrium of fluids revolving	
	uniformly about an axis, stability of equilibrium,	
	metacentre, conditions of stability; Gases – relation	
	among pressure, volume and temperature, Boyle's	
	law, Charle's law, ideal gas, isothermal and adiabatic	
	changes, heat capacities, internal	
Paper – VII	Group-A	AI
	Mathematical Probability (40 Marks)	
	Prerequisite: [Concept of mathematical probility,	
	addition and multiplication theorem of probability.	
	Independent event, total probability, Bayes' theorem,	
	Bernoulli trials, Binomial distribution].	
	Generalised addition and multiplication rule of	
	probability continuity theory, Boole's inequality,	
	Bonferroni's inequality; Poisson trials and Poisson law	
	of probability, Multinomial law; Random variables,	
	Discrete and continuous distribution functions:	
	Poisson, Geometric, Negative Binomial, exponential,	
	Hypergeometric, Uniforn, Normal, Gamma, Beta,	
	Cauchy distributions,	
	Group -B	AI
	Statistics (20 Marks)	
	Method of least square, curve fitting (straight line,	
	parabola and exponential curves). Sampling theory,	
	simple random sampling, sampling distribution of the	
	statistic; , and -distribution of the statistic. Theory of	
	estimation, point estimation, unbiasedness, minimum	
	variance, consistency, efficiency, sufficiently,	
	maximum likelihood method; Interval estimation –	

	confidence interval, approximate confidence interval.	
	Testing of hypothesis, Neyman-Pearson lemma,	
	Likelihood ratio testing, application to Normal(m,)-	
	population, Pearsonian -test for goodness of fit.	
	Theory of errors 2	
	Group – C	SD
	Operations Research (Marks - 40)	
	Prerequisite: [General introduction to optimization	
	problem, Definition of L.P.P., Mathematical	
	formulation of the problem, Canonical & Standard	
	form of L.P.P., Basic solutions, feasible, basic feasible	
	& optimal solutions]. Reduction of a feasible solution	
	to basic feasible solution. Hyperplanes, Convex sets	
	and their properties, Convex functions, Extreme	
	points, Convex feasible region, Convex polyhedron,	
	Polytope, Supporting hyperplane, Separating	
	hyperplane.	
	Fundamental theorem of L.P.P., Replacement of a	
	basis vector, Improved basic feasible solutions,	
	Unbounded solution, Condition of optimality, Simplex	
	Unbounded solution, Condition of optimality, Simplex method, Simplex algorithm, Artificial	
Paper –	Unbounded solution, Condition of optimality, Simplex method, Simplex algorithm, Artificial Group A	CD
Paper – VIII	Unbounded solution, Condition of optimality, Simplex method, Simplex algorithm, Artificial Group A Numerical Analysis (35 Marks)	CD
Paper – VIII	Unbounded solution, Condition of optimality, Simplex method, Simplex algorithm, Artificial Group A Numerical Analysis (35 Marks) Approximation of numbers, significant digits, Loss of	CD
Paper – VIII	Unbounded solution, Condition of optimality, Simplex method, Simplex algorithm, Artificial Group A Numerical Analysis (35 Marks) Approximation of numbers, significant digits, Loss of significance, Algebraic manipulation for avoiding loss	CD
Paper – VIII	Unbounded solution, Condition of optimality, Simplex method, Simplex algorithm, Artificial Group A Numerical Analysis (35 Marks) Approximation of numbers, significant digits, Loss of significance, Algebraic manipulation for avoiding loss of significance. Errors: Absolute, Relative and	CD
Paper – VIII	Unbounded solution, Condition of optimality, Simplex method, Simplex algorithm, Artificial Group A Numerical Analysis (35 Marks) Approximation of numbers, significant digits, Loss of significance, Algebraic manipulation for avoiding loss of significance. Errors: Absolute, Relative and Percentage errors; Inherent errors in numerical	CD
Paper – VIII	Unbounded solution, Condition of optimality, Simplex method, Simplex algorithm, Artificial Group A Numerical Analysis (35 Marks) Approximation of numbers, significant digits, Loss of significance, Algebraic manipulation for avoiding loss of significance. Errors: Absolute, Relative and Percentage errors; Inherent errors in numerical methods. Polynomial Interpolations: Existence and	CD
Paper – VIII	Unbounded solution, Condition of optimality, Simplex method, Simplex algorithm, Artificial Group A Numerical Analysis (35 Marks) Approximation of numbers, significant digits, Loss of significance, Algebraic manipulation for avoiding loss of significance. Errors: Absolute, Relative and Percentage errors; Inherent errors in numerical methods. Polynomial Interpolations: Existence and uniqueness of interpolating polynomials, error in	CD
Paper – VIII	Unbounded solution, Condition of optimality, Simplex method, Simplex algorithm, Artificial Group A Numerical Analysis (35 Marks) Approximation of numbers, significant digits, Loss of significance, Algebraic manipulation for avoiding loss of significance. Errors: Absolute, Relative and Percentage errors; Inherent errors in numerical methods. Polynomial Interpolations: Existence and uniqueness of interpolating polynomials, error in interpolation, Lagrange's interpolating formula,	CD
Paper – VIII	Unbounded solution, Condition of optimality, Simplex method, Simplex algorithm, Artificial Group A Numerical Analysis (35 Marks) Approximation of numbers, significant digits, Loss of significance, Algebraic manipulation for avoiding loss of significance. Errors: Absolute, Relative and Percentage errors; Inherent errors in numerical methods. Polynomial Interpolations: Existence and uniqueness of interpolating polynomials, error in interpolation, Lagrange's interpolating formula, Newton's divided difference interpolating formula,	CD
Paper – VIII	Unbounded solution, Condition of optimality, Simplex method, Simplex algorithm, Artificial Group A Numerical Analysis (35 Marks) Approximation of numbers, significant digits, Loss of significance, Algebraic manipulation for avoiding loss of significance. Errors: Absolute, Relative and Percentage errors; Inherent errors in numerical methods. Polynomial Interpolations: Existence and uniqueness of interpolating polynomials, error in interpolation, Lagrange's interpolating formula, Newton's divided difference interpolating formula, properties of divided differences, forward and	CD
Paper – VIII	Unbounded solution, Condition of optimality, Simplex method, Simplex algorithm, Artificial Group A Numerical Analysis (35 Marks) Approximation of numbers, significant digits, Loss of significance, Algebraic manipulation for avoiding loss of significance. Errors: Absolute, Relative and Percentage errors; Inherent errors in numerical methods. Polynomial Interpolations: Existence and uniqueness of interpolating polynomials, error in interpolation, Lagrange's interpolating formula, Newton's divided difference interpolating formula, properties of divided differences, forward and backward difference operators and their relations,	CD
Paper – VIII	Unbounded solution, Condition of optimality, Simplex method, Simplex algorithm, Artificial Group A Numerical Analysis (35 Marks) Approximation of numbers, significant digits, Loss of significance, Algebraic manipulation for avoiding loss of significance. Errors: Absolute, Relative and Percentage errors; Inherent errors in numerical methods. Polynomial Interpolations: Existence and uniqueness of interpolating polynomials, error in interpolation, Lagrange's interpolating formula, Newton's divided difference interpolating formula, properties of divided differences, forward and backward difference operators and their relations, Newton's forward and backward difference	CD
Paper – VIII	Unbounded solution, Condition of optimality, Simplex method, Simplex algorithm, Artificial Group A Numerical Analysis (35 Marks) Approximation of numbers, significant digits, Loss of significance, Algebraic manipulation for avoiding loss of significance. Errors: Absolute, Relative and Percentage errors; Inherent errors in numerical methods. Polynomial Interpolations: Existence and uniqueness of interpolating polynomials, error in interpolation, Lagrange's interpolating formula, Newton's divided difference interpolating formula, properties of divided differences, forward and backward difference operators and their relations, Newton's forward and backward difference interpolation formulae. Central difference and	CD
Paper – VIII	Unbounded solution, Condition of optimality, Simplex method, Simplex algorithm, Artificial Group A Numerical Analysis (35 Marks) Approximation of numbers, significant digits, Loss of significance, Algebraic manipulation for avoiding loss of significance. Errors: Absolute, Relative and Percentage errors; Inherent errors in numerical methods. Polynomial Interpolations: Existence and uniqueness of interpolating polynomials, error in interpolation, Lagrange's interpolating formula, Newton's divided difference interpolating formula, properties of divided differences, forward and backward difference operators and their relations, Newton's forward and backward difference interpolation formulae. Central difference and averaging operators, central interpolation formulae:	CD
Paper – VIII	Unbounded solution, Condition of optimality, Simplex method, Simplex algorithm, Artificial Group A Numerical Analysis (35 Marks) Approximation of numbers, significant digits, Loss of significance, Algebraic manipulation for avoiding loss of significance. Errors: Absolute, Relative and Percentage errors; Inherent errors in numerical methods. Polynomial Interpolations: Existence and uniqueness of interpolating polynomials, error in interpolation, Lagrange's interpolating formula, Newton's divided difference interpolating formula, properties of divided differences, forward and backward difference operators and their relations, Newton's forward and backward difference interpolation formulae. Central difference and averaging operators, central interpolation formulae: Statement of Gauss, Stirling and Bessel's formulae	CD

		polynomial interpolation, Idea of Inverse interpolation.	
		Numerical solution of non-linear equations: Solution	
		of algebraic and transcendental equations (real roots	
		only): (i) Method of Bisection, (ii) Regula Falsi	
		Method (iii) Secant Method (iv) Newton – Raphson	
		Method (v) Fixed point iteration method.	
		Convergences and rate of convergence of these	
		methods. Solution of a system of linear algebraic	
		equation: Gauss' Elimination and Gauss Jordan	
		methods, Pivoting methods, Jacobi and Gauss-Seidel	
		methods with convergence criteria.	
		Group-B	CD
		Computer Programming (Marks – 15)	
		Computer Language: Concept of programming	
		languages, Machine language, Assembly language,	
		High-level language, Interpreter, Compiler, Source and	
		Object programs. Number Systems: Binary, decimal,	
		octal and hexadecimal number systems and their	
		conversions. Programming Language in C: C-	
		Character set, Keywords, Basic data types, Numeric	
		constants and variables operators, Expressions,	
		Assignment statements, I/0 – statements. Control	
		Statements: Decision making and Looping statements	
		in C, break continue and goto statements, Example of	
		simple programs. Subscripted variables: Concept of	
		array variables in programming language, Rules for	
		one dimensional subscripted variable in C, Simple	
		programs. Sub-program: Concept of sub-program,	
		purpose of sub-program, Definition of function and	
		function prototype, Simple programs.	
			A.1
	'aper-IX	Computer Alded Numerical Methods: Practical	AI
		(using C programming) (warks: 50) Sessional	
		(Algorithm, Flowenart and Frogram with output) :	
		IV Marks	
Tentative	e dates of Int	ernal Assessment are first week of February 2019.	